- Nomenclature, symbols, units and their usage in spectrochemical analysis-VIII. Nomenclature system for X-ray spectroscopy. Recommendations (1991)Google Scholar
- Jenkins R, Manne R, Robin J, Senemaud C (1991) Part VIII. Nomenclature system for X-ray spectroscopy. Pure Appl Chem 63:735CrossRefGoogle Scholar
- Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM (1997) High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 188:196CrossRefGoogle Scholar
- Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Bergren NF, Newbury DE, Martinis JM (1998) Microcalorimeter EDS with 3 eV energy resolution. In: Proceedings of the 14th international conference on electron microscopy, vol 3, p 573Google Scholar
- Zaluzec NJ (1979) Quantitative X-ray microanalysis. In: Introduction to analytical electron microscopy. Hen JJ, Goldstein JI, Joy DC. (Plenum, New York, p 121)CrossRefGoogle Scholar
- Yang J-M, Shindo D, Takeguchi M, Kawasaki M, Oikawa T (1999) Characterization of microstructure and magnetic domain structure in Sm-Co based permanent magnets by advanced transmission electron microscopy. J Jpn Inst Metals 63:542 (In Japanese)Google Scholar
- Ziebold TO (1967) Precision and sensitivity in microprobe analysis. Anal Chem 39:858CrossRefGoogle Scholar
- Watanabe M, Williams DB (1999) Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78:89CrossRefGoogle Scholar
- Kawasaki M, Oikawa T, Ibe K, Park K-H, Shiojiri M (1998) EDS elemental mapping of a DRAM with an FE-TEM. J Electron Microsc 47:335CrossRefGoogle Scholar
- Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203CrossRefGoogle Scholar
- Schreiber TP, Wims AM (1981) A quantitative Xray microanalysis thin film method using K-, L-, and M-lines. Ultramicroscopy 6:323Google Scholar
- Goldstein JI, Williams DB, Cliff G (1986) Quantitative X-ray analysis. In: Joy DC, Romig AD Jr, Goldstein JI (eds) Principles of analytical electron microscopy. (Plenum, New York, p 155)Google Scholar
- Mott NF, Massey HSW (1949) The theory of atomic collisions, 2nd edn. Oxford University Press, London, p 243zbMATHGoogle Scholar
- Green M, Cosslett VE (1961) The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc Phys Soc 78:1206ADSCrossRefGoogle Scholar
- Horita Z (1998) Quantitative X-ray microanalysis in analytical electron microscopy. Mater Trans JIM 39:947Google Scholar
- Überall H (1956) High-energy interference effect of bremsstrahlung and pair production in crystals. Phys Rev 103:1055ADSCrossRefGoogle Scholar
- Barbiellini G, Bologna G, Diambrini G, Murtas GP (1962) Experimental evidence for a quasi-monochromatic bremsstrahlung intensity from the Frascati 1-GeV electronsynchrotron. Phys Rev Lett 8:454ADSCrossRefGoogle Scholar
- Spence JCH, Reese G, Yamamoto N, Kurizki G (1983) Coherent bremsstrahlung peaks in X-ray microanalysis spectra. Phil Mag B48:L39CrossRefGoogle Scholar
- Reese GM, Spence JCH, Yamamoto N (1984) Coherent bremsstrahlung from kilovolt electrons in zone axis orientations. Phil Mag A49:697ADSGoogle Scholar
- Spence JCH, Reese G (1986) Pendellösung radiation and coherent bremsstrahlung. Acta Cryst A42: 577Google Scholar
- Satoh T, Otsuki E, Shindo D (1998) Coherent bremsstrahlung in ferrite observed by an analytical transmission electron microscope. J Electron Microsc 47:345CrossRefGoogle Scholar
- Shindo D, Hiraga K, Williams T, Hirabayashi M, Inoue A, Masumoto T (1989) Electron channelling effect in an Al-Fe-Cu quasicrystal. Jpn J Appl Phys 28:L688ADSCrossRefGoogle Scholar
- Cowley JM (1964) The derivation of structural information from absorption effects in X-ray diffraction. Acta Cryst 17:33CrossRefGoogle Scholar
- Batterman BW (1969) Detection of foreign atom sites by their X-ray fluorescence scattering. Phys Rev Lett 22:703ADSCrossRefGoogle Scholar
- Spence JCH, Taftø J (1983) ALCHEMI: a new technique for locating atoms in small crystals. J Microsc 130:147CrossRefGoogle Scholar
- Shindo D, Hirabayashi M, Kawabata T, Kikuchi M (1986) A channelling enhanced microanalysis on niobium atom location in an Al-43 %Ti-2 %Nb intermetallic compound. J Electron Microsc 35:409Google Scholar
- Shindo D, Chiba A, Hiraga K, Hanada S (1991) Electron channelling enhanced microanalysis of intermetallic compounds. In: Izumi O (ed) Proceedings of the International Symposium on Intermetallic Compounds, p 87Google Scholar
- Horita Z, Matsumura S, Baba T (1995) General formulation for ALCHEMI. Ultramicroscopy 58:327CrossRefGoogle Scholar
- Rossouw CJ, Forwood CT, Gibson MA, Miller PR (1996) Statistical ALCHEMI: general formulation and method with application to Ti-Al ternary alloys. Phil Mag A74:57ADSGoogle Scholar
- Shindo D, Kikuchi M, Hirabayashi M, Hanada S, Izumi O (1988) Site determination of Fe, Co and Cr atoms added in Ni3AI by electron channelling enhanced microanalysis. Trans Jpn Inst Metall 29:956Google Scholar
- Chiba A, Shindo D, Hanada S (1991) Site occupation determination of Pd in Ni3Al by ALCHEMI. Acta Metall Mater 39:13CrossRefGoogle Scholar
- Nakata Y, Tadaki T, Shimizu K (1991) Atom location of the third element in Ti-Ni-X shape memory alloys determined by the electron channelling enhanced microanalysis. Mater Trans JIM 32:580Google Scholar
- Spence JCH, Graham RJ, Shindo D (1986) Cold ALCHEMI: impurity atom site location and the temperature dependance of dechannelling. Mater Res Soc Symp Proc 62:153CrossRefGoogle Scholar
- Okaniwa H, Shindo D, Yoshida M, Takasugi T (1999) Determination of site occupancy of additives X (X = V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Mater 47:1987CrossRefGoogle Scholar
- Gjønnes J, Høier R (1971) The application of nonsystematic many-beam dynamical effects to structure factor determination. Acta Cryst A27:313Google Scholar
- Matsumura S, Morimura T, Oki K (1991) An analytical electron diffraction technique for the determination of long-range order parameters in multi-component ordered alloys. Mater Trans JIM 32:905Google Scholar
- Bentley J (1986) Axial electron channeling microanalysis of Ll2 ordered alloys. In: Proceedings of the 11th International Congress on Electron Microscopy, Kyoto, vol 1, p 551Google Scholar
- Pennycook SJ (1985) Electron channeling analysis and Z-contrast imaging of dopants in semiconductors. In: Bailey GW (ed) Proceedings of the 43rd annual EMSA meeting. San Francisco Press, San Francisco, p 296Google Scholar
- Pennycook SJ (1988) Delocalization corrections for electron channeling analysis. Ultramicroscopy 26:239CrossRefGoogle Scholar
X-ray spectroscopy is a general term for several spectroscopic techniques for characterization of materials by using x-ray excitation. 1 Characteristic X-ray spectroscopy. 1.1 Energy-dispersive X-ray spectroscopy. 1.2 Wavelength-dispersive X-ray spectroscopy. 2 X-ray emission spectroscopy. 2.1 Instrumentation. 2.1.1 Grating spectrometers. Energy-dispersive X-ray spectroscopy sometimes called energy dispersive X-ray analysis (EDXA) or energy dispersive X-ray microanalysis (EDXMA), is an.
It is a software utility that will find the right driver for you - automatically.DriverGuide maintains an extensive archive of Windowsdrivers available for free download. We employ a team from around the world. Level one wua 0614 drivers for mac. They add hundreds of new drivers to our site every day.Having trouble finding the right driver?